
Chapter 1

The 64 bit x86 C Calling Convention

. . .

This chapter was derived from a document written by Adam Ferrari and later updated by Alan Batson, Mike Lack,
Anita Jones, and Aaron Bloomfield

1.1 What is a Calling Convention?

At the end of the previous chapter, we saw a simple example of a subroutine defined in x86 assembly
language. In fact, this subroutine was quite simple – it did not modify any registers except EAX (or
RAX) (which was needed to return the result), and it did not call any other subroutines. In practice,
such simple function definitions are rarely useful. When more complex subroutines are combined in
a single program, a number of complicating issues arise. For example, how are parameters passed to
a subroutine? Can subroutines overwrite the values in a register, or does the caller expect the register
contents to be preserved? Where should local variables in a subroutine be stored? How should results be
returned from functions?

To allow separate programmers to share code and develop libraries for use by many programs, and to
simplify the use of subroutines in general, programmers typically adopt a common calling convention. The
calling convention is simply a set of rules that answers the above questions without ambiguity to simplify
the definition and use of subroutines. For example, given a set of calling convention rules, a programmer
need not examine the definition of a subroutine to determine how parameters should be passed to that
subroutine. Furthermore, given a set of calling convention rules, high-level language compilers can be
made to follow the rules, thus allowing hand-coded assembly language routines and high-level language
routines to call one another.

In practice, even for a single processor instruction set, many calling conventions are possible. In this
class we will examine and use one of the most important conventions: the C language calling convention.
Understanding this convention will allow you to write assembly language subroutines that are safely
callable from C and C++ code, and will also enable you to call C library functions from your assembly
language code.

1

2 CHAPTER 1. THE 64 BIT X86 C CALLING CONVENTION

1.2 The C Calling Convention

The C calling convention is based heavily on the use of the hardware-supported stack. To understand the
C calling convention, you should first make sure that you fully understand the push, pop, call, and ret
instructions – these will be the basis for most of the rules. In this calling convention, subroutine parame-
ters are passed on the stack. Registers are saved on the stack, and local variables used by subroutines are
placed in memory on the stack. In fact, this stack-centric implementation of subroutines is not unique to
the C language or the x86 architecture. The vast majority of high-level procedural languages implemented
on most processors have used similar calling convention.

The calling convention is broken into two sets of rules. The first set of rules is employed by the caller
of the subroutine, and the second set of rules is observed by the writer of the subroutine (the “callee”). It
should be emphasized that mistakes in the observance of these rules quickly result in fatal program errors;
thus meticulous care should be used when implementing the call convention in your own subroutines.

1.3 The Caller’s Rules

The caller should adhere to the following rules when invoking a subroutine:

1. Before calling a subroutine, the caller should save the contents of certain registers that are designated
caller-saved. The caller-saved registers are r10, r11, and any registers that parameters are put into. If
you want the contents of these registers to be preserved across the subroutine call, push them onto
the stack.

2. To pass parameters to the subroutine, we put up to six of them into registers (in order: rdi, rsi,
rdx, rcx, r8, r9). If there are more than six parameters to the subroutine, then push the rest onto
the stack in reverse order (i.e. last parameter first) – since the stack grows down, the first of the
extra parameters (really the seventh parameter) parameter will be stored at the lowest address (this
inversion of parameters was historically used to allow functions to be passed a variable number of
parameters).

3. To call the subroutine, use the call instruction. This instruction places the return address on top of
the parameters on the stack, and branches to the subroutine code.

4. After the subroutine returns, (i.e. immediately following the call instruction) the caller must remove
any additional parameters (beyond the six stored in registers) from stack. This restores the stack to
its state before the call was performed.

5. The caller can expect to find the return value of the subroutine in the register RAX.
6. The caller restores the contents of caller-saved registers (r10, r11, and any in the parameter passing

registers) by popping them off of the stack. The caller can assume that no other registers were
modified by the subroutine.

Due to the way the calling convention is structured, it will typically be the case that some (or most)
of these steps will not make any changes to the stackd. For example, if there are six or fewer parameters,
then nothing is pushed onto the stack in that step. Likewise, programmers (and compilers) tyipcally keep
the results they care about out of the caller-saved registers in steps 1 and 6 to prevent excess pushes and
pops.

1.4. THE CALLEE’S RULES 3

1.4 The Callee’s Rules

The definition of the subroutine should adhere to the following rules:

1. Allocate local variables by using registers or making space on the stack. Recall, the stack grows
down, so to make space on the top of the stack, the stack pointer should be decremented. The
amount by which the stack pointer is decremented depends on the number of local variables needed.
For example, if a local float and a local long (12 bytes total) were required, the stack pointer
would need to be decremented by 12 to make space for these local variables:

Listing 1.1: x86 callee code, part 2

sub rsp , 12

As with parameters, local variables will be located at known offsets from the stack pointer.
2. Next, the values of any registers that are designated callee-saved that will be used by the function

must be saved. To save registers, push them onto the stack. The callee-saved registers are RBX, RBP,
and R12 through R15 (RSP will also be preserved by the call convention, but need not be pushed on
the stack during this step).
After these three actions are performed, the actual operation of the subroutine may proceed. When
the subroutine is ready to return, the call convention rules continue:

3. When the function is done, the return value for the function should be placed in RAX if it is not
already there.

4. The function must restore the old values of any callee-saved registers (RBX, RBP, and R12 through
R15) that were modified. The register contents are restored by popping them from the stack. Note,
the registers should be popped in the inverse order that they were pushed.

5. Next, we deallocate local variables. The easiest way to do this is to add to RSP the same amount
that was subtracted from it in step 1.

6. Finally, we return to the caller by executing a ret instruction. This instruction will find and remove
the appropriate return address from the stack.

If you look at the assembly generated by some compilers, you will see a few extra commands in there
in the callee’s prologue:

Listing 1.2: x86 extraneous codedd

push rbp ; a t t h e s t a r t o f t h e c a l l e e
mov rbp , rsp
. . .

pop rbp ; j u s t b e f o r e t h e end ing ’ r e t ’

This code is unnecessary, and is a hold-over from the 32-bit calling convention. You can tell the com-
piler to not include this code by invoking it with the -fomit-frame-pointer flag.

It might be noted that the callee’s rules fall cleanly into two halves that are basically mirror images of
one another. The first half of the rules apply to the beginning of the function, and are therefor commonly
said to define the prologue to the function. The latter half of the rules apply to the end of the function, and
are thus commonly said to define the epilogue of the function.

4 CHAPTER 1. THE 64 BIT X86 C CALLING CONVENTION

1.5 Calling Convention Example

The above rules may seem somewhat abstract on first examination. In practice, the rules become simple
to use when they are well understood and familiar. To start the process of better understanding the call
convention, we now examine a simple example of a subroutine call and a subroutine definition.

Listing 1.3: Example function call, caller’s rules obeyed

; Want t o c a l l a f u n c t i o n ”myFunc” t h a t t a k e s t h r e e
; i n t e g e r p a r a m e t e r s . F i r s t p a r a m e t e r i s in r a x .
; Second p a r a m e t e r i s t h e c o n s t a n t 123 . Th i rd
; p a r a m e t e r i s in memory l o c a t i o n ” var ”

push r d i ; r d i w i l l be a param , so s a v i n g i t

; l ong r e t V a l = myFunc (x , 123 , z) ;
mov rdi , rax ; put f i r s t param in r d i
mov r s i , 123 ; put s e c o n d param in r s i
mov rdx , [var] ; put t h i r d param in rdx

c a l l myFunc ; c a l l t h e f u n c t i o n

pop r d i ; r e s t o r e s a v e d r d i v a l u e

; r e t u r n v a l u e o f myFunc i s now a v a i l a b l e in rax
; (i f t h e r e i s any r e t u r n v a l u e)

In Listing 1.3 a sample function call is depicted. The three parameters are put into the parameter
passing registers; if there were more than 6, then the additional ones would be pushed onto the stack in
reverse order. The call instruction is used to jump to the beginning of the subroutine in anticipation of the
fact that the subroutine will use the ret instruction to return when the subroutine completes. When the
subroutine returns, the parameters must be removed from the stack. A simple way to do this is to add
the appropriate amount to the stack pointer (since the stack grows down). Finally, the result is available
in RAX.

Next up is the caller’s rules. An example subroutine implementation that obeys the callee’s rules
is depicted in Listing 1.4. The subroutine prologue performs the standard actions of allocating local
variables by decrementing the stack pointer, and saving register values on the stack.

In the body of the subroutine we can how the local variables are accessed. The prologue put 24 bytes
of “stuff” onto the stack: three 8 byte values. The first was the local variable (via the sub rsp, 8 call).
The second was the rbx backup, and the third was the rbp backup. Thus, the stack pointer is now 16 bytes
below the local variable, as two 8 byte “things” have been pushed onto the stack since the local variable
was allocated. Thus, to access the local variable, one uses [rsp+16], as seen throughout the code.

The function epilogue, as expected, is basically a mirror image of the function prologue. The caller’s
register values are recovered from the stack, the local variables are deallocated by resetting the stack
pointer, and the ret instruction is used to return to the appropriate code location in the caller.

1.5. CALLING CONVENTION EXAMPLE 5

Listing 1.4: Example function definition, callee’s rules obeyed

globa l myFunc

s e c t i o n . t e x t

myFunc :
; ∗∗∗ Standard s u b r o u t i n e p r o l o g u e ∗∗∗
sub rsp , 8 ; room f o r a 64− b i t l o c a l var (r e s u l t)
push rbx ; s a v e c a l l e e −s a v e r e g i s t e r s
push rbp ; b o t h w i l l be used by myFunc

; ∗∗∗ S u b r o u t i n e Body ∗∗∗
mov rax , r d i ; param 1 t o rax
mov rbp , r s i ; param 2 t o rbp
mov rbx , rdx ; param 3 t o rbx
mov [rsp +16] , rbx ; put rbx i n t o l o c a l var
add [rsp +16] , rbp ; add rbp i n t o l o c a l var
mov rax , [rsp +16] ; mov c o n t e n t s o f l o c a l var t o rax

; (r e t u r n v a l u e / f i n a l r e s u l t)

; ∗∗∗ Standard s u b r o u t i n e e p i l o g u e ∗∗∗
pop rbp ; r e c o v e r c a l l e e s a v e r e g i s t e r s
pop rbx ; REVERSE o f when pushed
add rsp , 8 ; d e a l l o c a t e l o c a l var (s)
r e t ; pop t o p v a l u e from s t a c k , jump t h e r e

A good way to visualize the operation of the calling convention is to draw the contents of the nearby
region of the stack during subroutine execution. Figure 1.1 depicts the contents of the stack during the
execution of the body of myFunc (myFunc is depicted in Listing 1.4). Notice, lower addresses are depicted
lower in the figure, and thus the “top” of the stack is the bottom-most cell. This corresponds visually to
the intuitive statement that the x86 hardware stack “grows down.” The cells depicted in the stack are
64-bit wide memory locations, thus the memory addresses of the cells are 4 bytes apart. From this picture
we see clearly why the first parameter resides at an offset of 8 bytes from the base pointer. Above the
parameters on the stack (and below the base pointer), the call instruction placed the return address, thus
leading to an extra 4 bytes of offset from the base pointer to the first parameter.

The assembly code for myFunc() was shown above in Listing 1.4. The C++ code to call that subrou-
tine is shown in Listing 1.5.

6 CHAPTER 1. THE 64 BIT X86 C CALLING CONVENTION

 (return address)

(any caller saved regs)

local variable

saved value of rbx

saved value of rbp
rsp

[rsp+16]

Higher addresses

Lower addresses

Figure 1.1: A picture of the stack in memory during the execution of the body of myFunc

Listing 1.5: Example C++ code to invoke a 3-parameter x86 subroutine

include <iostream>
using namespace std ;

extern ”C” i n t myFunc (int , int , i n t) ;

i n t main () {
i n t x = 3 ;
cout << ”myFunc () returned : ”

<< myFunc (x , 5 , 1 0) << endl ;
return 0 ;

}

