
Chapter 1

IBCM: The Itty Bitty Computing Machine

The child receives data through the sense organs; the child also has some inborn processing capacities –
otherwise it would not be able to learn – but in addition, some “information” or “programs” are built-in
at birth . . . there is a working memory . . . and there is a permanent memory . . . so there must be some
inner “language” or medium of representation . . . Jerry Fodor . . . has discussed this inbuilt “language
of thought,” which is similar conceptually to the “machine language” that is built into the personal
computer.

– John Cleverly, in “Visions of childhood: Influential models from Locke to Spock” [3]

1.1 Introduction

Machine language, or machine code, is the set of instructions that a computer’s central processing unit
(CPU) understands. It is the binary 0’s and 1’s that form instructions for the CPU to execute. When we
compile a program, that program is eventually converted to binary machine code, which we can then run.
Each different CPU has a different machine language that it understands, although CPU families tend to
understand a very similar language.

Programming in machine language requires one to write the code in hexadecimal notation, manually
encoding the instructions one at a time. For this reason, machine language can often be difficult to pro-
gram in. This is especially true with the complexities of modern instruction sets on processor families
such as the x86 and MIPS.

One will often write a program in assembly language, which is a (somewhat) higher-level manner to
create a program. In assembly language, one can specify to add two values together through a command
such as sub esp, 24, and need not write it in the hexadecimal notation of 0x83ec20. An assembler is
a program that converts assembly language into machine language. In fact, compilers typically produce
assembly language, and then call the assembler to produce the machine code.

Learning how machine language works allows us to truly understand how a machine operates at a
very low level.

In this chapter we introduce a simplified machine language called the Itty Bitty Computing Machine,
or IBCM. This machine language is designed to be simple enough that it can be learned in a reasonable
amount of time, but complex enough that one can use it to write a wide range of programs. It is intended
to teach many of the important concepts of a modern machine language without having to deal with the
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2 CHAPTER 1. IBCM: THE ITTY BITTY COMPUTING MACHINE

complexities of – and time required to learn – modern CPU machine languages.

1.2 Memory Hierarchy

Typically, computer programs do not differentiate between the various levels of memory. Programs tend
to view memory as a monolithic whole, and allocate memory as needed. In fact, there are many different
levels of memory. Fast memory – formally called static random-access memory or SRAM – is expensive to
make, and computers would be quite expensive if all memory were fast memory. In fact, some super
computers did just this – the Cray Y-MP, a super computer from the late 1980’s, used only SRAM, and it
cost approximately 10 million dollars.

Instead, most computers use primarily dynamic random-access memory, or DRAM, as the primary
component of main memory, and use a smaller amount of SRAM to speed up computations. SRAM is
used in the cache, although we will not go into detail about caches here.

Figure 1.1: Memory Hierarchy

The four primary levels of memory are
listed below. Cost decreases and storage ca-
pacity increases as one moves down the list.

• CPU registers
• Static random-access memory (SRAM)

in various levels of cache (L1 cache, L2
cache, etc.)
• Dynamic random-access memory (DRAM)

used in main memory
• Hard drive storage, either on a tradi-

tional hard disk with rotating platters,
or on solid state hardware.

This chapter will largely ignore storing
data in cache or on the hard drive, as that is
typically managed by the operating system.
Instead, we will primarily focus on the values
kept in the registers in a CPU, and in main
memory.

Main memory is relatively slow, com-
pared with the speed of a CPU. In addition, many CPUs can only allow one memory access per instruc-
tion. Thus, the other values must be kept in a location that is not main memory: the CPU’s registers. A
register is a small area of memory in the CPU where intermediate computation values can be stored. A
modern CPU will have registers that each are 32 or 64 bits in size, and may have 12-32 of these registers.

Thus, there are instructions – in both machine language and assembly language – that move data
between the CPU’s registers and main memory. We will see these instructions shortly.
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1.3 IBCM Principles of Operation

1.3.1 Machine Description

The Itty Bitty Computing Machine (IBCM) is a very simple computer. In fact, it’s so simple that no one
in their right mind would build it using today’s technology. Nevertheless – except for limits on problem
size – any computation that can be performed on the most modern, sophisticated computer can also be
performed on the IBCM. Its main virtues are that it can be taught quickly and provides context for talking
about more recent architectures.

The IBCM contains a single register, called the accumulator. Most early computers had just an ac-
cumulator, and many current micro-controllers are still accumulator machines. IBCM’s accumulator can
hold a 16-bit 2’s complement integer. In addition, the IBCM has two other registers: the instruction reg-
ister (IR), which contains the current instruction being executed, and the program counter (PC), which
contains the address of the next instruction to be executed. However, we will not directly use those two
registers.

The IBCM has 4,096 addressable memory locations and each of these locations holds 2 bytes (16 bits).
Thus, the IBCM technically has 8,192 bytes (8 Kb) of memory.

The IBCM handles input by reading in single values (either a hexadecimal value or an ASCII character)
into the accumulator. Similarly, output is handled by writing the value in the accumulator as either a
hexadecimal value or an ASCII character.

1.3.2 Instructions

The IBCM equivalent of “statements” in a higher level language are very simple instructions. Each in-
struction is encoded in a 16-bit word in one of the formats shown in Figure 1.2. Shaded areas in the figure
represent portions of the instruction word whose value does not matter. For example, a word whose
leftmost four bits are zero is an instruction to halt the computer.

bit: 15 14 13 12 11 10 . . . 0

0 0 0 0 (unused) halt

0 0 0 1
I/O
op

(unused) I/O

0 0 1 0
shift
op

(unused) count shifts

opcode address others

Figure 1.2: IBCM instruction format

A note on using hexadecimal notation: IBCM is a binary computer. Internally all operations are per-
formed on 16-bit binary values. However, because it’s so tedious and error-prone for humans to write or
read 16-bit quantities, all of IBCM’s input/output is done either as ASCII characters or 4-digit hexadeci-
mal numbers. Remember that these are just external shorthands for the internal 16-bit values!

Also, hexadecimal values are often prefixed by a ’0x’, such as ’0x1234’.
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Halt

Any instruction where the opcode is zero (i.e., the first 4 bits are all zero) will halt the IBCM. It does not
matter what the remaining 12 bits are. Not much else to say on this one.

Input and Output

The input and output (or ’I/O’) instructions move data between the accumulator and the computer ’de-
vices’ – the keyboard and screen. Data can be moved either as hexadecimal numbers or as an ASCII
character; in the later case, only the bottom (least significant) 8 bits of the accumulator are involved. The
next two bits after the opcode specify if the instruction is an input or output, and if it will use hexadeci-
mal values or ASCII characters. The four possibilities (in/out, hex/ASCII) that are specified by the bits
11 and 10 of the instruction word as shown in Table 1.1. Being as there are only four possibilities, the full
hexadecimal encoding of each of the four I/O instructions is also listed.

bit 11 bit 10 operation hex value
0 0 read a hexadecimal word (four digits) into the accumulator 0x1000
0 1 read an ASCII character into the accumulator bits 8-15 0x1400
1 0 write a hexadecimal word (four digits) from the accumulator 0x1800
1 1 write an ASCII character from the accumulator bits 8-15 0x1c00

Table 1.1: IBCM input/output bit values

Shifts and Rotates

Shifting and rotating are common operations in computers. Shifting means moving data to the right or
left; rotating is much the same thing except that bits that “fall off” one end are reinserted at the other end.

The examples below assume that the value being rotated is one byte (8 bits) in length. In reality, the
IBCM performs shifts and rotates on the 16 bit value in the accumulator. We choose to describe these
operations with 8 bit quantities to make the explanation easier to understand.

Diagrammatically, a “right shift” of “n positions” looks like Figure 1.3 when n = 3:

 0  1  0  0  1  1  1  0

 0  0  0  0  1  0  0  1  1  1  0

Original

Shifted

Figure 1.3: A right shift of 3

Each bit is moved n positions to the right (three in this case). Alternatively, it is moved one bit to the
right n times. This causes the original n right-most bits to fall off the right end and n new (zero) bits to
be inserted at the left end. A “left shift” is much the same, except that bits move to the left, as shown in
Figure 1.4.
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 0  1  0  0  1  1  1  0

 0  1  1  1  0  0  0  0

Original

Shifted 0  1  0  

Figure 1.4: A left shift of 3

As noted previously, rotates are like shifts except that the bits that fall off one end but are reinserted
at the other end. Figure 1.5 is a left rotation; right rotates are left to your imagination.

 0  1  0  0  1  1  1  0

 0  1  1  1  0  0  1  0

Original

Shifted

Figure 1.5: A left rotation of 3

Note that the shift instructions uses bits 11-10 to specify the shift operation. The first bit specifies if it
is a shift (0) or rotate (1), and the second bit specifies if it is moving left (0) or right (1). This is shown in
Table 1.2.

bit 11 bit 10 operation
0 0 shift left
0 1 shift right
1 0 rotate left
1 1 rotate right

Table 1.2: IBCM shift/rotate bit values

In addition, bits 3-0 of the shift instructions specify the “shift count” – that is, the number of bits
positions that the data is to be shifted (or rotated).

A left rotate of 3, which is what is shown in Figure 1.5, would have the opcode set to 2 (binary 0010),
the shift/rotate bit set to 1, the left/right bit set to 0, and the shift count set to 3. The encoded instruction,
in binary, is shown in Figure 1.6. Note that the grayed-out part of the table are the bits whose value does
not matter; we set them to 0.

0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 = 0x2803
opcode rot. left unused shift

bit bit bits count

Figure 1.6: IBCM instruction for a right rotate of 3

As shown in the table, the hexadecimal encoding of the instruction is 0x2803.
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Other Instructions

All other bit combinations in the left-most four bits either specify an arithmetic instruction or a control
instruction – similar to assignment statements and gotos in a high level language. The first four bits are
called the “op” field of the instruction; the value of this field is often called the “opcode”. The “address”
portion of the instruction generally specifies an address in memory where an operand (variable) will be
found.

There are 13 IBCM operations of this form – eight that manipulate data and five that perform con-
trol. The data manipulation operations all involve the “accumulator” and typically data from a memory
location is specified by the address portion of the instruction (the not and nop instructions are the only
two different ones). The result of data manipulation operations is recorded in the accumulator. Thus, the
“add” instruction forms the arithmetic sum of the present contents of the accumulator with the contents of
the memory location specified by “address” and puts the result back into the accumulator. Thus, it is sim-
ilar to the primitive assignment statement “accumulator = accumulator + memory[address]”.

The control instructions determine the next instruction to be executed. The “jump” instruction, for
example, causes the next instruction executed to be the one at the location contained in its address field.
If you think of the address of a memory cell like a label in a high level language, then jump is just “goto
address”.

Two of the control instructions are conditional; they either cause a change in the control flow or not,
depending on the value of the accumulator. The simplest of the control instruction is nop; it does nothing.

Table 1.3 describes the function of each of these 13 IBCM instructions; both English and programming
language-like explanations are given for each instruction. In the latter, “a” is the accumulator, “addr” is
the value of the address portion of the instruction, and “mem[]” is memory.

op name HLL-like meaning English explanation
316 load a := mem[addr] load accumulator from memory
416 store mem[addr] := a store accumulator into memory
516 add a := a + mem[addr] add memory to accumulator
616 sub a := a – mem[addr] subtract memory from accumulator
716 and a := a & mem[addr] logical ‘and’ memory into accumulator
816 or a := a |mem[addr] logical ‘or’ memory into accumulator
916 xor a := a ⊕mem[addr] logical ‘xor’ memory into accumulator
A16 not a := ∼ a logical complement of accumulator
B16 nop do nothing (no operation)
C16 jmp goto ‘addr’ jump to ‘addr’
D16 jmpe if a = 0 goto addr jump to ‘addr’ if accumulator equals zero
E16 jmpl if a < 0 goto addr jump to ‘addr’ if accumulator less than zero
F16 brl branch and link jump (branch) to ‘addr’; set accumulator to the value of the

the “return address” (i.e., the instruction just after the brl)

Table 1.3: IBCM opcodes

A few words of additional explanation are necessary for some of these operations, all of which are
fairly standard for most computers.

1. Arithmetic operations may “overflow” or “underflow”; that is, the magnitude of the result may
be larger than can be represented in 16 bits. The programmer is responsible for ensuring that this
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doesn’t happen.

2. The logical operations (and, or, xor, and not) perform bit-wise operations on the operands. The
Boolean operations themselves are shown in Figure 1.7.

and 0 1
0 0 0
1 0 1

or 0 1
0 0 1
1 1 1

xor 0 1
0 0 1
1 1 0

not
0 1
1 0

Figure 1.7: Boolean operation reference

3. The not instruction only inverts the bits in the accumulator, and does not use a memory location;
the ’address’ part of the instruction is ignored.

4. Likewise, the nop instruction ignores the ’address’ part of the instruction.

5. The branch and link instruction is used for subroutine calls, as discussed later.

1.3.3 Other opcodes

When writing an IBCM program, one will typically write out the IBCM opcodes, such as add and store.
There are a few other opcodes that are not listed above, but that will often appear in an IBCM file:

• dw (for “declare word”), for declaring variables
• readH and printH are for reading or writing a hexadecimal value
• readC and printC are for reading or writing an ASCII character
• shiftL and shiftR are for the shifts
• rotL and rotR are for the rotations

1.4 Sample Program

Consider the IBCM program shown in Listing 1.1. This program does not compute a useful result; that’s
coming next. Instead, it is intended to show how the IBCM works.�

Address I n s t r u c t i o n Opcode Address
000 3000 load 000
001 5000 add 000
002 6001 sub 001
003 8003 or 003
004 a000 not N/A
005 4000 s t o r e 000
006 f000 b r l 000
� �

Listing 1.1: Sample IBCM program

Let’s trace what this program does. All the values below are in hexadecimal. All addresses are repre-
sented using three digits.
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1. Address 000: Instruction value 3000. Opcode 3 is a load, with an address of 000. This will load the
value in memory at address 000 into the accumulator. The value in address 000 is 3000 – it is both
the instruction being executed and the data being loaded. The accumulator is now 3000.

2. Address 001: Instruction value 5000. Opcode 5 is an add, with an address of 000. This will add the
value in memory at address 000 to the accumulator, and store the result in the accumulator. The
value in address 000 is 3000, so the result (and the new accumulator value) is 6000.

3. Address 002: Instruction value 6001. Opcode 6 is a sub, with an address of 001. This will subtract
the value in memory at address 001 from the accumulator, and store the result in the accumulator.
The value at address 001 is 5000; 6000-5000=1000. Thus, the new accumulator value is 1000.

4. Address 003: Instruction value 8003. Opcode 8 is an or, with an address of 003. This will perform a
bit-wise or’ing of the value in memory address 003 with the value in the accumulator, and store the
result in the accumulator. The value in address 003 is 8003 – again, we are using the same value for
the instruction being executed and for the data being used.

To perform a bit-wise logical operation, write out the full bit values for each of the operands, and
perform the bit-wise operation (or, in this case) on each of the bits in each column.

0x8003 = 1000 0000 0000 0011
∨ 0x1000 = 0001 0000 0000 0000

1001 0000 0000 0011 = 0x9003

Thus, the value in the accumulator is 9003.

5. Address 004: Instruction value a000. Opcode a is a not operation. This opcode ignores the address
portion of the instruction, as the operation just inverts all the bits of the accumulator. The bit value
of the accumulator prior to the not operation is listed in the previous step.

¬ 0x9003 = 1001 0000 0000 0011
0110 1111 1111 1100 = 0x6ffc

Thus, the value in the accumulator is 6ffc.

6. Address 005: Instruction value 4000. Opcode 4 is a store instruction, with an address of 000. This
will store the current value in the accumulator (6ffc) into memory at address 000. The previous
value in that spot (3000) is, of course, overwritten.

7. Address 006: Instruction value f000. Opcode f is a brl (branch and link) instruction, with address
000. This will store the address of the next instruction (i.e., the address after 006, or 007) in the
accumulator, and jump to the specified address of 000. Thus, the value in the accumulator after this
instruction is 0007, and the next instruction to be executed is address 000.

8. Address 000: Instruction value 6ffc. Note that this value was written to memory two steps prior (the
instruction at address 005), and control jumped to this instruction from the previous instruction (the
instruction at address 006). Opcode 6 is a sub, with address ffc. As all values in IBCM’s memory are
initialized to zero, the value in address ffc is thus zero. Thus will subtract zero from the accumulator
yielding the original value of 0007, which is what is stored in the accumulator after this instruction
is executed.

Program control will continue. The next time the accumulator executes the instruction at address 005
(instruction value 4000; opcode 4 is a store), the value written to address 000 will be 5ffc (opcode 5 is an
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add). The next time around, it will write 6ffc (opcode 6 is a sub). Thus, this program will loop forever,
alternately writing 6ffc and 5ffc to address 000 at the end of each loop.

One of the important points to note in the above program is that the distinction between data and
instructions is blurred. The value 6ffc is computed through a series of instructions, and then stored –
as data – at address 000. But when the program control reaches that point, the value of 6ffc – that was
previously data – now becomes an instruction.

We will see additional examples of using data as instructions, and using instructions as data, in the
example programs section, below.

1.5 The IBCM Simulator/Debugger

Figure 1.8: Web-based IBCM interface

To run an IBCM program, you can view
the online simulator at http://libra.cs.
virginia.edu/ibcm [2]. The instructions listed
in this section are also listed at that website. An
image of the online emulator is shown in Fig-
ure 1.8.

The simulator reads in text files, and proceeds
to simulate the result of an IBCM program execu-
tion.

To load a file, use the Browse button at the top
of the simulator page. Find the IBCM file, and
click on the “Load” button. The format of your
program file is very rigid – the first four charac-
ters of each line are interpreted as a hexadecimal
number. The number on the first line is loaded
into location zero, the next into location one and
so on. Characters after the first four on each line
are ignored, so you should use them to comment
the code. Blank lines are not allowed, nor are lines
that do not start with four hexadecimal digits (i.e.,
no ’comment’ lines). An invalid file will either not
load up at all, or will load up gibberish.

The left side of the simulator lists all the mem-
ory locations (using the hexadecimal address), the
value in memory (if any), and the PC (program counter) value. Note that any blank value field is inter-
preted as’0000’, as per the IBCM specification. When first loaded, the simulator may uninitialized values
blank to increase readability.

The value column consists of a series of text boxes, which allow you to directly edit the values in mem-
ory. The simulator will read the current memory location from the appropriate text box when executing
an instruction. You can undo any edits by using the Revert button, described below. The IBCM simulator
does not check to ensure that your entered values are valid – it is up to the user to do this. Note that all
hexadecimal values must be 4 digits (i.e. ’0000’, not ’0’), or else the simulator may not function correctly.
Be sure to read the section about crashing browsers and losing your work, below. There is no way to save
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your edited work – you will need to copy the changes by hand. This is party due to a browser limitation,
and partly due to the fact that memory editing is meant to be a debugging tool, not a means to write entire
IBCM programs from scratch.

The ’PC’ column lists the current value of the program counter. It can have three values. Normally,
it will have a left pointing arrow (’<-’), which indicates the next instruction that will be executed. If the
simulator is waiting for input, it will have a capital ’I’ (for Input) next to the input instruction that is
currently awaiting a value – and the “Input” text on the right side will blink. Lastly, if the program has
halted, then a capital ’H’ (for Halt) will be displayed next to the halt instruction that was executed.

On the right side, the values of the accumulator and program counter are listed, both in hexadecimal
notation. As mentioned above, the PC field will also display, on the left side next to the hexadecimal
address, if the simulator is awaiting input or is halted. The Input box is used to read in user input when
a program requests it. When the simulator is waiting for input, it will flash the ’Input’ text. In addition,
the simulator will specify which type of input is being requested: ’hex’ or ’asc’ for hexadecimal or ASCII
input, respectively. Note that for entering a hexadecimal value, you do not need to enter all 4 digits: i.e.,
you can enter ’12’ instead of ’0012’. This is distinctly different that editing memory locations (you have to
enter all 4 digits for those). If you enter multiple characters for ASCII input, it will only read in the first
one.

Below this are four buttons. Two control execution: Run, which will start a program executing, and
Step, which will execute a single instruction. Note that Run will execute until either a halt command is
reached, or until an input command is reached. The other two buttons control the resetting of the IBCM
program. The Reset button will reset the PC and accumulator, in effect allowing the program to run again.
It will not, however, modify any memory locations. The Revert button will do what a Reset does, but will
also revert the memory locations to what they were when the file was last loaded; it does not load the
file from disk again. Thus, if you have edited any of the memory locations (or the IBCM program has
modified them), then those changes will be erased on a Revert, but not on a Reset. Note that a Revert will
not modify memory addresses outside the range that was loaded (i.e. any ’blank’ values).

Any output is displayed in the text area below these buttons. Each output command prints the value
(hexadecimal or ASCII character) on a separate line.

A few notes:

• You will notice a slight delay when loading the simulator page. This is due to the fact that a number
of scripts are run when the page loads (to initialize the memory table of 4096 elements, for example),
and this takes a bit of time. How long this takes is determined by how fast a computer it is running
on, as the scripts are run on the client side.

• Upon entering input, hitting Enter is considered the same as hitting the Run button again. If you
only want to execute a single instruction after an input, you must click on the Step button.

• The simulator does minimal error checking with the input from the keyboard during program exe-
cution – it is the user’s responsibility to ensure that the input is properly formatted. The only error
checking that is done is to ensure that a non-empty string was entered (if it was, then the simulator
waits for more input).

• Because of the limitations of threads running in web browsers, there is no way to terminate a pro-
gram that is stuck in an infinite (or very long) loop – the browser will not allow a polling (checking)
to see if a Stop button was pressed, for example. Some browsers will pause the script after a minute
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or so of execution, and ask if the user wants to continue. Alternatively, you can close the web
browser and restart. Note that this means if you have edited any of the memory locations, and your
browser hangs or is restarted, you will lose any and all changes you have made to the memory
locations!

• The simulator page is a PHP script, which means that it will not work if you are viewing it as a local
file (if the beginning of your URL is “file://” instead of “http://”), or if the web server hosting this
page does not have PHP installed (this latter restriction includes UVa’s Collab web server).

• Browser compatibility: It has been tested in Internet Explorer under Windows, Safari under Mac OS
X, and Firefox under Windows, Mac OS X, and Ubuntu Linux. Note that the display of the changing
of the values as the simulation is run (the PC, memory values, etc.) will only work on some browser
/ operating system combinations (Firefox, in particular, works well for this). The other browsers
will have the same end state after the program is run, but will not animate the execution of the
IBCM program when ’Run’ is pressed (the ’Step’ command will still animate each step).

• The format of your program file is very rigid – the first four characters of each line are interpreted
as a hexadecimal number. The number on the first line is loaded into location zero, the next into
location one and so on. Characters after the first four on each line are ignored, so you should use
them to comment the code; example code will be discussed in class.

• When you execute a halt, the simulator will halt with the PC pointing at the halt.

1.6 Writing IBCM Programs

1.6.1 Complex control structures

�
i f ( B == 0 )

S1 ;
e l s e
S2
� �

Listing 1.2: if pseudo code

The control structures that we are familiar with in higher level lan-
guages can be implemented in IBCM, albeit with a bit more effort.
Consider a typical pseudo code if-then-else conditional shown in List-
ing 1.2 to the right.

The IBCM code for this conditional is shown in Listing 1.3. Be-
cause we do not know many of the required addresses (of variable B,
or where S1 and S2 start in memory), we have chosen to leave it in as-
sembly format (i.e., using opcodes) rather than provide machine code. �

load B
jmpe S1
S2 : . . .
jmp done ;
S1 : . . .
done : . . .
� �
Listing 1.3: IBCM if code

If we wanted to compare B to a different value, such as 5, we would
have to load B into the accumulator, subtract 5 from that, and then
perform a jmpe or jmpl. This is illustrated further below, when dis-
cussing the while loop.

Presumably, the ellipses at labels S1 and S2 would have some set of
IBCM opcodes to execute.

�
while ( B >= 5 )

S ;
� �
Listing 1.4: while pseudo code

Loops are also easily converted to IBCM. Note that a for loop is
just a while loop, but with a statement performed before the loop
starts (the “for init”), and a statement performed at the end of each
loop iteration (the “for update”). Consider a straight forward while
loop shown in Listing 1.4.
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We cannot directly compare a variable to the value 5; we can only
compare it to zero via the jmpe and jmpl instructions. Our IBCM code
is shown in Listing 1.5.

�
loop : load B
sub f i v e
jmpl done
S : . . .
jmp loop
done : . . .
� �

Listing 1.5: IBCM while code

If B < 5, then we want our loop to terminate. If B < 5, then
B− 5 < 0, so we will execute a jmpl to break out of the loop. If B = 5,
then B − 5 = 0, and we will continue in the loop.

1.6.2 General tips

When writing IBCM programs, we recommend these steps:

1. Write the pseudo code first – or even actual code – to make sure your algorithm works as desired.
If you have a bug in the design of your algorithm, then you will never get your IBCM code to work.

2. Write the program using IBCM opcodes, so that it looks like assembly: add one, store x, etc.
Comment this clearly!

3. Trace this assembly code, by hand, from beginning to end. It will be far easier to find a bug in your
program in the assembly stage than in the hexadecimal code stage.

4. Finally, translate it to machine code, and run it in the simulator.

We cannot stress enough how important it is to first make sure that the algorithm works, then to write
and trace the assembly versions of the program. Debugging hexadecimal machine code is not much fun.

1.7 Example Programs

We present a number of IBCM example programs to help you get acquainted with the language.

1.7.1 Summation

�
i n t main ( void ) {

i n t n , s = 0 ;
c in >> n ;
for ( i n t i = 0 ; i <= n ; i ++ )

s += i ;
cout << s << endl ;

}
� �
Listing 1.6: C++ summation program

The first program will compute the sum of the integers
1 through n, where n is read from the keyboard; the
resulting sum is printed to the screen. The program
then halts after printing the sum. The C++ code for the
program is shown in Listing 1.6 – this is presented to
help show the conversion to IBCM.

The IBCM program is shown in Listing 1.7. Note
that the only part of the program that the simulator
reads in is the first four characters on the line. The rest
of the line in the text file is solely for comments. The
column headers shown in the figure are heavily abbreviated to fit in the width of a column, but are, in or-
der: the actual 4 hexadecimal digit memory value, the hexadecimal location (used for determining jump
targets and variable addresses), the label (used to refer to jump and variable targets), the opcode (from
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Table 1.3), the target address (which refers to a given label), and any English comments. Note that the col-
umn headers would not be in the input file; only the IBCM hexadecimal instructions. They are included
in the listing for clarity.�

Mem Loc ’ n Label Opcode} Addr Comments
C006 00 jmp i n i t jmp past vars
0000 01 i dw i n t i
0000 02 s dw i n t s
0000 03 n dw i n t n
0001 04 one dw
0000 05 zero dw
1000 06 i n i t readH read n
4003 07 s t o r e n
3004 08 load one i = 1
4001 09 s t o r e i
3005 0A load zero s = 0
4002 0B s t o r e s
3003 0C loop load n i f i>n , jmp x i t
6001 0D sub i
E016 0E jmpl x i t
3002 0F load s s += i
5001 10 add i
4002 11 s t o r e s
3001 12 load i i += 1
5004 13 add one
4001 14 s t o r e i
C00C 15 jmp loop goto loop
3002 16 x i t load s p r i n t s
1800 17 printH
0000 18 h a l t h a l t
� �

Listing 1.7: IBCM summation program

1.7.2 Array usage

�
read A
read N
s = 0
i = 0
while ( i < N)

s += a [ i ]
i += 1

p r i n t s ;
� �
Listing 1.8: Array index pseudo code

For this program, we will compute the sum of the el-
ements of an array, print this sum on the screen, and
then halt. Note that the array is just a series of sequen-
tial spots in memory; it could be part of the program
itself, or a series of data values after the program itself.
The address of the first element of the array and the
size of the array are to be read from the keyboard.

The pseudo code for this program is shown in List-
ing 1.8. C++ does not easily allow for reading in an
array address (while technically possible, it is not very
practical), so a C++ version of this program is not as
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useful as a pseudo code version.

The IBCM code is shown in Listing 1.9.�
Mem Loc ’ n Label Opcode Addr Comments}
C00A 00 jmp s t a r t skip around the v a r i a b l e s
0000 01 i dw 0 i n t i
0000 02 s dw 0 i n t s
0000 03 a dw 0 i n t a [ ]
0000 04 n dw 0
0000 05 zero dw 0
0001 06 one dw 1
5000 07 a d i t dw 5000
0000 08 leave space f o r changes
0000 09
1000 0A s t a r t readH read array address
4003 0B s t o r e a
1000 0C readH read array s i z e
4004 0D s t o r e n i = 0 ; s = 0
3005 0E load zero
4001 0F s t o r e i
4002 10 s t o r e s
3004 11 loop load n i f ( i >= N) goto x i t
6001 12 sub i
E020 13 jmpl x i t
D020 14 jmpe x i t
3007 15 load a d i t form the i n s t r u c t i o n to add a [ i ]
5003 16 add a
5001 17 add i
401A 18 s t o r e d o i t p lant the i n s t i n t o the program
3002 19 load s s += a [ i ]
b000 1A doi t nop
4002 1B s t o r e s
3001 1C load i i += 1
5006 1D add one
4001 1E s t o r e i
C011 1F jmp loop goto loop
3002 20 x i t load s p r i n t s
1800 21 printH
0000 22 h a l t
� �

Listing 1.9: IBCM array index program

A quick note before the full analysis. Notice that addresses 08 and 09 are blank – this was done to
leave space for additional variables. If one has to add a variable into the program later, shifting all of the
successive instructions down is a frustrating task, as all the addresses (of the jump targets, etc.) need to
be shifted as well. So we left a few blank lines in case we needed additional variables later on.

The challenging part of this program is the array subscripting. In our pseudo code – and in most pro-
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gramming languages – we use a syntax such as a[i]. But the IBCM does not have any array subscripting
instruction – indeed, it cannot, as that requires two values (the array base and the index). Thus, we have
to build the instruction to execute.

Our goal is to load the current sum (of the array elements processed so far) into the accumulator, exe-
cute the instruction to add the current a[i] to the accumulator, and store that back into the sum variable.
This is done in instructions 19, 1a, and 1b: instruction 19 loads the current sum into the accumulator,
instruction 1a is our special instruction that adds a[i] to the accumulator (how this works is next), and
instruction 1b stores the updated result back into the sum variable (address 002).

Thus, we want to create an instruction that will add a given a[i] to the accumulator. So we know it
will be an add instruction (opcode of 5). The address that we want to add to the accumulator is the array
base plus the index.

For example, if the array starts at address 100, and we are trying to add the value at index 5 of the
array, our instruction would have opcode of 5 (an add instruction), and address 105 (100 for the array
start plus 5 for the current index). Thus, our instruction would be 5105.

To create this during the program execution, we start with 5000, which sets the opcode of the instruc-
tion to the correct value for an add instruction. This is done in instruction 15, which is a load of the adit
variable (address 007), which has value 5000. To this value of 5000 we add the array base (instruction 16)
and then the index (instruction 17). Instruction 18 then stores that instruction at the appropriate address
(address 1a), overwriting the nop that is there with our updated instruction. Once the current sum is
loaded (instruction 19), our custom instruction is executed (instruction 1a), followed by the sum being
stored back into memory (instruction 1b).

1.7.3 Recursive multiplication

The next program computes the product of two numbers, x and y, through a recursive multiplication
subroutine that uses only addition. Both x and y are read from the keyboard, and the resulting product is
printed to the screen. The IBCM version is just over 100 lines of opcodes.�

i n t mult ( i n t x , i n t y ) {
i f ( y == 0 )

return 0 ;
e lse

return x+mult ( x , y−1) ;
}

i n t main ( void ) {
i n t x , y ;
c in >> x ;
c in >> y ;
cout << mult ( y , x ) << endl ;

}
� �
Listing 1.10: C++ multiplication program

The C++ code for the multiplication program can be
seen in Listing 1.10. We did not create a tail recursive
multiply() routine, as the IBCM compiler and lan-
guage is (intentionally) far too simple to optimize for
tail recursion.

This IBCM program creates a stack similar to x86:
the stack starts at the end of addressable memory, and
grows downward. An activation record is created for
each recursive call, which consists of the two parame-
ters and the return address – other fields typically in
an activation record (e.g., backup of registers) are not
necessary in IBCM. The brl instruction was used to al-
low for subroutine calls – the return address is saved
in the accumulator, and is stored on the stack immedi-
ately upon subroutine activation. We were able to run
the program with the second parameter (which is decremented in each recursive call) set as high as 1,243
(0x4db), beyond which point IBCM runs out of available memory for the stack.
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This recursive multiplication program is beyond what we would expect of a student to be able to
program after a one-week introduction to IBCM. However, it is very illustrative of two important points
about IBCM. One is that complex functionalities (such as multiplication) can be achieved by using only the
simple capabilities available in IBCM (such as addition). The other is that subroutines are fully realizable
in IBCM.

This program is shown in Listings 1.11 and 1.12. Note that the only part of the program that the
simulators read in is the first four characters on the line. The rest of the line in the text file is solely for
comments. The column headers and extra blank lines for comments are shown in the diagram for clarity,
but would not be included in the IBCM source code file.

1.8 Turing Completeness

We were conflicted as to how much to discuss about Turing completeness in this chapter. IBCM is similar
to a Random Access Stored Program (RASP) machine [15], which is itself Turing complete, so it is perhaps
not surprising that IBCM is also Turing complete. However, we felt that breaking down a complex task
(a Turing machine simulator) and programming it into IBCM was a worthwhile task to discuss, as it
emphasizes a primary design goal of IBCM – that you can take any algorithm and write it in IBCM.

Obviously, no physical computer with a finite amount of memory can be truly Turing complete. Thus,
we will instead show that the IBCM computational model is Turing complete.

We define the IBCM computational model as the same IBCM computer defined above, but allowing any
sized integer to be held in a single memory location, as well as having an infinite amount of memory.
Thus, other fields that make up part of a given instruction, such as the ’address’ or ’count’ fields (see
Figure 1.2), can also hold any size integer.

Given this model of computation, we will show how to simulate a Turing machine in IBCM. Hopcroft
and Ullman [4] define a Turing machine as a 7-tuple M = 〈Q,Γ, b,Σ, δ, q0, F 〉where:

• Q is a finite set of states
• Γ is the finite set of allowable tape symbols
• b ∈ Γ is the blank symbol
• Σ ⊆ Γ \ b is the set of input symbols
• δ : Q× Γ→ Q× Γ× {L,R} is the transition function
• q0 ∈ Q is the initial state
• F ⊆ Q is the set of final states

We will make two modifications to the above definition, to allow for ease of implementation in IBCM.
We will allow a no-shift transition of S (in addition to L and R), which will not move the tape. The Turing
machine programs allowed by the no-shift are equivalent to the ones described above [16]. Furthermore,
we will define f , a single final state, which all states in F move to on a no-shift transition.

To represent the transition functions in IBCM, we will represent state q ∈ Q and symbol Σ ∈ Γ each
as a (16-bit) word in IBCM. Thus, states and symbols will be a single integer each. While this limits the
number of states (and symbols) to 216 = 65, 536 in our IBCM implementation, it is not limited in the
formal IBCM computational model. Thus, one can encode any amount of states, symbols, and transition
functions into IBCM’s memory.
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Mem Loc ’ n Label Opcode Addr Comments

push the return address onto s tack
4002 27 mult s t o r e tmp s t o r e the return address i n t o tmp
3001 28 load s p t r load the s tack pointer
5004 29 add s t o r e c r e a t e a s t o r e i n s t r u c t i o n
402 c 2a s t o r e pos3 s t o r e the s t o r e i n s t i n t o pos3
3002 2b load tmp load up the value to push onto s tack
b000 2 c pos3 nop w i l l hold the push−to−s tack i n s t
3001 2d load s p t r load the s tack pointer
6007 2e sub one decrement i t
4001 2 f s t o r e s p t r s t o r e i t back

s e t p o s s i b l e re turn value of zero
3006 30 load zero load zero i n t o the accumulator
400a 31 s t o r e r e t v a l i f we are returning , s t o r e zero in

the return value
get the 2nd parameter , compare to 0

3001 32 load s p t r load the s tack pointer
5003 33 add load c r e a t e a load i n s t r u c t i o n
5009 34 add three move to the pos of the 2nd parameter
4036 35 s t o r e pos4 s t o r e the load i n s t r u c t i o n i n t o pos4
b000 36 pos4 nop w i l l hold i n s t to load 2nd parameter
4002 37 s t o r e tmp s t o r e i t in tmp f o r use on l i n e 049
d03a 38 jmpe r e t i f 0 , we’ re done with the recurs ion
c046 39 jmp recurse otherwise c a l l ourse lves r e c u r s i v e l y

in order to return , we need to
c r e a t e a jump i n s t , c lean up the
stack , and return 0

3001 3a r e t load s p t r load the s tack pointer
5003 3b add load c r e a t e a load i n s t r u c t i o n
5007 3 c add one move to the pos of re turn address
403 e 3d s t o r e pos5 s t o r e the load i n s t r u c t i o n i n t o pos5
b000 3e pos5 nop w i l l hold i n s t to load return addr
5005 3 f add jmp c r e a t e a jump i n s t r u c t i o n
4045 40 s t o r e pos6 s t o r e the jmp i n s t r u c t i o n i n t o pos6
3001 41 load s p t r load the s tack pointer
5007 42 add one add one to ’ remove ’ the return addr
4001 43 s t o r e s p t r s t o r e i t back
300a 44 load r e t v a l load the return value
b000 45 pos6 nop w i l l hold the jmp ( return ) i n s t ;

to c a l l ourse lves r e c u r s i v e l y , we
push the 2 parameters onto the s tack
stack , then c a l l with b r l .
load 2nd parameter , decrement i t ,
then push i t onto the s tack

3001 46 recurse load s p t r load the s tack pointer
5004 47 add s t o r e c r e a t e a s t o r e i n s t r u c t i o n
� �

Listing 1.11: IBCM multiplication program, part 1
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Mem Loc ’ n Label Opcode Addr Comments
404b 48 s t o r e pos7 s t o r e the s t o r e i n s t r u c t i o n in pos2
3002 49 load tmp the 2nd parameter i s already in tmp
6007 4a sub one s u b t r a c t one
b000 4b pos7 nop w i l l hold the push−to−s tack i n s t
3001 4 c load s p t r load the s tack pointer
6007 4d sub one decrement i t
4001 4e s t o r e s p t r s t o r e i t back

load the 1 s t parameter i n t o tmp
3001 4 f load s p t r load the s tack pointer
5003 50 add load c r e a t e a load i n s t r u c t i o n
5009 51 add three move to p o s i t i o n of 1 s t parameter
4053 52 s t o r e pos8 s t o r e the load i n s t r u c t i o n i n t o pos4
b000 53 pos8 nop w i l l hold i n s t to load 1 s t parameter
4002 54 s t o r e tmp s t o r e i t in tmp f o r use on l i n e 058

push 1 s t parameter onto s tack second
3001 55 load s p t r load the s tack pointer
5004 56 add s t o r e c r e a t e a s t o r e i n s t r u c t i o n
4059 57 s t o r e pos9 s t o r e the s t o r e i n s t i n t o pos1
3002 58 load tmp load value to push onto the s tack
b000 59 pos9 nop w i l l hold the push−to−s tack i n s t
3001 5a load s p t r load the s tack pointer
6007 5b sub one decrement i t
4001 5 c s t o r e s p t r s t o r e i t back

c a l l the subroutine
f027 5d b r l mult using the branch−and−l i n k i n s t

take the return value , and add 1 s t
parameter to i t , and return t h a t

4002 5e s t o r e tmp s t o r e the return value in tmp
3001 5 f load s p t r load the s tack pointer
5003 60 add load c r e a t e a load i n s t r u c t i o n
5007 61 add one move to the p o s i t i o n of the 1 s t

parameter ( one because the r e t
addr i s not on the s tack )

4063 62 s t o r e pos10 s t o r e the load i n s t i n t o pos4
b000 63 pos10 nop w i l l hold the i n s t r u c t i o n to load

the 1 s t parameter
5002 64 add tmp add returned value to the 1 s t param
400a 65 s t o r e r e t v a l s t o r e i t f o r l a t e r

c lean up s tack ( pop the two params )
3001 66 load s p t r load the s tack pointer
5008 67 add two increment the s tack pointer by two

f o r the two parameters
4001 68 s t o r e s p t r s t o r e i t back
c03a 69 jmp r e t jump to the return part of t h i s code

( re turn value in r e t v a l )
� �
Listing 1.12: IBCM multiplication program, part 2



1.8. TURING COMPLETENESS 19

0 1 2 3
0/ R

1/ L

0/ L
1/ R

0/ L

1/ S

Figure 1.9: Four state Busy Beaver automaton

To simulate a Turing machine, we will define an arbitrary memory location to represent the current
state of the Turing machine, and another arbitrary memory location to contain the current address of the
head of the tape. The transition function quintuples, δ, will start at a specific (but arbitrary) memory
address, take up five words each, and will contain the five parts listed above (Q,Γ, Q,Γ, {L,R, S}). The
tape itself will start at different arbitrary memory location. Furthermore, we define a initial state q0 and
a (single) final state f . The blank symbol b will be an arbitrary value, such as -1 (0xffff in 16-bit 2’s
complement integer).

Any Turing machine that requires a significant amount of tape will need to be a one-way tape Turing
machine, as the program code and state transitions will lie at a lower address than the initial head position.
Thus, only a finite amount of tape space is available in the lower memory address direction. The particular
automaton example that we provide, below, uses a two-way tape, but that is because we know the finite
amount of tape space necessary. Note that one-way tape Turing machines are equivalent in computational
power to two-way tape Turing machines [4].

What is needed, then, is an IBCM program that will iterate through the following steps:

• Read the current state s, initially set to the start state. If the current state is the (single) final state,
then exit.
• Read the current head position.
• Read the current input symbol t at the head position
• Search the list of transition functions until the appropriate one is found, based on the current state s

and the input symbol t.
• Perform the action specified in the transition function by updating the state s, writing the specified

symbol to the tape position, and then moving the tape left or right (or, on an S, not at all).

We have developed such a program, described here. The full listing of the program is available online
[2]. The program consists of 67 IBCM commands, and 15 variables – note that numeric constants are
considered variables in an IBCM program. This program only used half of the instructions: halt, load,
store, add, sub, nop, jmp, and jmpe.

To test the Turing machine, we choose a four state Busy Beaver automaton, which is described in more
detail in the Wikipedia page on Turing machine examples [17]. The Mealy machine finite automaton is
shown in Figure 1.9. For each transition, the input symbol (0 or 1) is shown, along with the tape direction
to move (L, R, or S). Note that in this automaton, upon each transition a 1 is written to the output tape;
this is not shown in the figure to improve clarity. Also recall that the S transition means to not move the
tape, and is used only on the transition to the final state.

Our implementation can utilize a two-way tape, although the tape in one direction is finite. We define
memory address 1 as the current state variable, and address 2 to store the location of the current head
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position. The transitions start at address 0x060, as our program takes up 82 (or 0x052) instructions. The
states are numbered as per the diagram in Figure 1.9, with 0 being the initial state and 3 being the final
state. The program has constants that specify both the initial and final states of the automaton.

The encoding of the automaton shown in Figure 1.9 is very straightforward. The transition from 2 to 1,
executed on an input symbol of 0, will print 1 to the tape and then move the tape to the left. The quintuple
to be encoded is Q × Γ → Q × Γ × {L,R, S}. The respective values for this transition are 2, 0, 1, 1, 0; we
map the integer values {0, 1, 2} to, respectively, the transition directions {L,R, S}.

1.9 Emulating IBCM in C++

How might one write software to emulate an IBCM machine in C++? A switch statement with 16 cases,
perhaps. But how to decode the instructions?

Let’s assume we had to write a C++ program that could extract the parts of an IBCM instruction. How
to do it? Assume the instruction is in an unsigned int x. One way to decode it is shown in Listing 1.13�

unsigned i n t opcode = ( x >> 12) & 0 x000f
unsigned i n t i o s h i f t o p = ( x >> 10) & 0 x0003
unsigned i n t address = x & 0 x 0 f f f
unsigned i n t s h i f t c o u n t = x & 0 x000f
� �

Listing 1.13: Decoding an IBCM instruction in C++

What about encoding? Assuming we have (unsigned ints) opcode, ioshiftop and shiftcount, the de-
coding is shown in Listing 1.14�

unsigned i n t i n s t r u c t i o n = ( opcode << 12) | ( i o s h i f t o p << 10) | s h i f t c o u n t
� �
Listing 1.14: Encoding an IBCM instruction in C++

This ends up being a rather frustrating program to write. If the instruction set being dealt with is more
complicated than IBCM, as is the case with x86 or MIPS instructions, then the above is very difficult to do
without any errors.

Listing 1.15 shows a data structure to make it easier. While the IBCM is a big-Endian machine, the
following code may be running on a big or little-Endian machine. The BIG ENDIAN and LITTLE ENDIAN
defines specify the Endianness of the host machine.

We would use the data structure as shown in Listing 1.16.

1.10 Pedagogy

IBCM was originally developed at the University of Virginia to complement our CS 3 course entitled
Program and Data Representation, which is still taught today. This course shows how one represents both
data and program code from high levels – such as abstract data types – all the way down to the lowest
(software) level, which is the IBCM machine language.

IBCM allows students to easily make the mental connection between assembly opcodes and the ma-
chine language that they get translated into. At the University of Virginia, we follow the presentation of
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union i b c m i n s t r u c t i o n {
# i f d e f BIG ENDIAN / / t h e IBCM i s b i g end i an

s t r u c t { unsigned char high , low ; } bytes ;
# else
# i f d e f LITTLE ENDIAN

s t r u c t { unsigned char low , high ; } bytes ;
# else
# e r r o r Must define BIG ENDIAN or LITTLE ENDIAN
# endif / / LITTLE ENDIAN
# endif / / BIG ENDIAN

s t r u c t { unsigned i n t op : 4 , unused : 1 2 ; } h a l t ;
s t r u c t { unsigned i n t op : 4 , ioopt : 2 , unused : 1 0 } io ;
s t r u c t { unsigned i n t op : 4 , s h i f t o p : 2 ,

unused : 5 , s h i f t c o u t : 5 ; } s h i f t s ;
s t r u c t { unsigned i n t op : 4 , address : 1 2 ; } others ;

} ;
� �
Listing 1.15: C++ data structure to ease IBCM instruction encoding

�
/ / r e a d in i n s t r u c t i o n i n t o unsg ined c h a r s a and b
i b c m i n s t r u c t i o n i n s t ;
i n s t . high = a ;
i n s t . low = b ;
i f ( i n s t . h a l t . op == 0 ) { / / h a l t
} e lse i f ( i n s t . io . op == 1 ) { / / i o

cout << i n s t . io . ioopt << endl ;
} e lse i f ( i n s t . s h i f t s . op == 2 ) { / / s h i f t s

cout << i n s t . s h i f t s . s h i f t o p << endl ;
cout << i n s t . s h i f t s . s h i f t c o u n t << endl ;

} e lse { / / a l l o t h e r s
cout << i n s t . o thers . address << endl ;

}
� �
Listing 1.16: Using the C++ data structure to encode IBCM instructions

IBCM with a two-week introduction to x86 assembly language. This allows students to understand both
machine language, as well as a modern processor’s assembly language (we use Intel x86), without having
to delve into the details of x86 machine language.

A specific design decision with IBCM was to include only basic operations – for example, multiplica-
tion and division are not included, but can be replicated by using repeated addition or subtraction. We
wanted students to see that any program, no matter how complicated, can be broken down into very
simple instructions. Indeed, this is the point of the concept of Turing machines, but they are often not
taught when students are first seeing machine language.

Students are exposed to a number of concepts during the IBCM module that they often have not
seen previously. They become aware that in both assembly language and machine language, data is
untyped, and the operations on the data determine the type – this is quite different than the typed high-
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level programming languages to which they are accustomed. By this point in our course, students have
been exposed to how a 32-bit value can be interpreted either as a two’s-complement signed integer or an
IEEE 754 floating point number.

Another concept taught through IBCM is self-modifying programs. A non-trivial IBCM program re-
quires arithmetic on instructions – in fact, only the first example program shown in Listing 1.7 did not use
this feature. Array indexing, for example, requires starting with a load or add instruction, and adding to
that value both the base address of the array and the current index. This value is then stored in a memory
address which is shortly thereafter executed. The second example program provided to the students uses
this feature. While many systems explicitly try to prevent self-modifying code, as that is an exploit used
by a significant amount of malware, it is still a concept that the students should be familiar with.

The development of self-modifying IBCM programs leads to another pedagogical goal of the course:
the interplay between data and program code. Indeed, there is little difference between data and program
code, other than the values (obviously), and how it is interpreted (and, in modern systems, what segment
of an executable in which the data is found). This concept seems trivial to instructors, but is one that
students who have only programmed using high-level languages are often unfamiliar with.

What IBCM does not teach, of course, is how binary machine language instructions are executed on the
processor. Understanding of this material is typically beyond all but senior-level undergraduate courses;
at many institutions, this is also outside the standard computing curriculum.

1.10.1 Materials Available

We have developed and made available a wide range of materials for the purpose of teaching the IBCM
module. The materials are all released under various Creative Commons licenses. They are available
online [2], and consist of:

• A PowerPoint slide set to introduce the concepts during a lecture-based course. This 42 slide set
takes about three 50-minute lectures to present.
• A Principles of Operation document, which describes the IBCM computer and language, and how to

write a program. It covers similar content to the lecture slides.
• Sample programs, one of which was shown in Listing 1.7, above. We also provide sample programs

on array indexing, for example. All the programs mentioned in this article are available online.
• Sample student assignments, which require students to write additional IBCM programs beyond

the sample programs provided. One of the assignments is to write a quine, or an IBCM program
that will print itself out – the smallest quine produced is nine IBCM commands.
• An online PHP/Javascript simulator, which is the primary way that the students program in IBCM.

This is shown above in Figure 1.8. The PHP is used to allow loading of an IBCM program from a
text file; the Javascript implements the IBCM simulator in the browser itself. The simulator works
across all major browsers on all major operating systems.
• A C++-based command-line program, which can both compile and execute IBCM programs. Not

surprisingly, this is much faster than the online simulator. This is particularly useful for automated
compilation and execution of IBCM programs for grading, or for very long programs, such as the
recursive multiply routine described above.

Furthermore, a GUI-based tool for executing IBCM programs is available separately [14]. This tool
allows for drag-and-drop loading of IBCM files into the GUI, and compiles natively for each operating
system.
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We very specifically have not developed an IBCM assembler, which would take in the opcodes in
an assembly language format and output hexadecimal machine code. The purpose of IBCM is to teach
the students machine language; given an IBCM assembler, this module ends up being just a different
assembly language for the students to learn.

1.10.2 Related Work

We are certainly not the first to propose a simplified machine language as a pedagogical tool. Andrew
Tanenbaum’s original 1984 text, Structured Computer Organization – now in its 5th edition – presents the
Mic-1 micro architecture and the Mac-1 machine language [11]. Indeed, the Mac-1 machine language
has many similarities with IBCM – this is not surprising, as there are many common elements that must
be present in all small instruction set machine languages. Further research in that decade presented
implementations of those languages [6, 7]. The Mic-1 simulator, which is focused on assembly language,
is available online [10]. Simulators for the Mac-1 machine language do exist, but seem to be independently
developed, and without a modern set of implementation software.

A number of high quality simulators exist at the assembly level. Pep/8 [12, 13] is a 16-bit CISC ar-
chitecture designed to teach assembly language concepts. While it can be used for machine language –
and can trace program execution at the machine language level – the primary pedagogical design is at the
assembly language level. Another example is SPIM, which is a full featured MIPS 32-bit simulator [5].

Additional research on machine language simulators has often focused on the register transfer level
[8], or is restricted to a single client operating system [1].

More recent research by Stone has focused on a similar machine language implementation [9]. Al-
though developed independently, our research can be seen as an extension of Stone’s, as we add a number
of additional aspects: significant pedagogical tools, a fully downloadable package so this system can be
used in any course, a proof of Turing completeness, and a discussion of pedagogical concerns.

We are not aware of any machine language simulators that are available with the set of modern tools
that we present with IBCM.

1.10.3 Results

At the University of Virginia, this module is taught about half-way through our CS3 course, which is
where we teach data structures. Our CS1 and CS2 course are both in Java. At this point in the CS3 course,
the students have learned to implement a number of data structures in C++. We introduce machine
language using IBCM for one week, follow that with two weeks of assembly programming (x86), and
then return to C++ for the remainder of the semester. The lectures used to teach IBCM typically take three
50-minute class periods. This is followed by an IBCM lab the following week. All of the lecture slides and
labs are available online [2].

We have taught machine language using IBCM in our CS3 class for over a decade here at the University
of Virginia. Over the years, student reactions to IBCM have varied greatly. With the usage of the modern
tool set presented in this article, those reactions have generally been positive, as shown below While they
often do not like being constrained to such a limited set of instructions, they see the purpose of learning
machine language, and generally enjoy the IBCM assignments. We have found that the quality of the
software tools is directly related to student perception of IBCM – in the past, when our IBCM simulator
was less refined, student reaction was significantly more negative.
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Objective comparison with other programming languages, including assembly language, are difficult
due to the vast differences between both the capabilities and the required learning curve. We have instead
focused on subjective assessment. In the most recent semester in which IBCM was used (fall of 2010), six
questions were asked of the students. All questions were asked on a Likert scale, where 1 means strongly
agree, 2 is agree, 3 is neutral, 4 is disagree, and 5 is strongly disagree. For all the questions, n = 89.

The first two questions focused on how much the students felt they learned from the IBCM module.
The middle two questions focused on the ease of use and enjoyability. And the last two questions focused
on how worthwhile this module was, both for this course and future courses. The results are shown in
Table 1.4.

Question Avg Stdev
IBCM increased my understanding of the basics of machine language 1.67 0.58
IBCM increased my understanding of how computers work at a low level 1.89 0.65
IBCM was easy to use, once I got the hang of programming in it 1.92 0.88
I enjoyed learning IBCM 2.01 0.98
Considering what was taught, IBCM was a worthwhile module to have in
this course

1.75 0.68

IBCM should be used in future iterations of this course 1.76 0.72

Table 1.4: IBCM survey results

The results clearly show that the module was generally well received. The lowest score, enjoyment of
learning IBCM, still was in the ’agree’ category.

1.11 Conclusions

We have used IBCM for over a decade at the University of Virginia in our CS3 class. During that time,
we have refined it into the pedagogical tool presented here. With the set of current pedagogical tools
provided, we have found it to be an effective means of teaching the basic concepts of machine language
without having to go into the complexity of modern machine languages that is beyond the scope of a
lower-level undergraduate course. All of the necessary materials are available online for adoption at
other institutions.
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